decentralized control

Interaction in Decentralized Control Systems: Application to Roll-to-Roll Systems

A procedure to analyze interaction in an experimental roll-to-roll system that uses a decentralized control strategy is presented in this paper. A Perron root based interaction metric is employed for the analysis. Experiments conducted on a roll-to-roll system are used to evaluate the interaction between different subsystems of the roll-to-roll system. To minimize interaction between subsystems of the roll-to-roll system, a procedure for designing pre-filters based on the Perron root of the system is also discussed in the paper. Experimental results with and without pre-filter clearly indicate the effectiveness of the pre-filter in minimizing interaction. Discussions regarding the roll-to-roll application, stability considerations and insights on using the Perron root based interaction measure for decentralized control applications are also given.

Decentralized Control of Print Registration in Roll-to-Roll Printing Presses

Roll-to-roll (R2R) manufacturing is a type of continuous manufacturing process extensively used to produce a wide variety of consumer products, such as plastics, paper, films, non-wovens, textile, etc. Recent advances in nanotechnology and material science have enabled the possibility of manufacturing electronics on a flexible substrate using R2R printing techniques. Even though the feasibility of printing electronics on flexible substrates has been extensively studied, continuous printing on a moving substrate using R2R techniques has not been adequately investigated. To facilitate progress towards high precision R2R printing, a systematic investigation of the various aspects that affect print quality and ways in which those can be influenced by different control configurations facilitated by choice and location of various components of the print section is necessary.